Dessiana Irma Yuanita Blogger's

Minggu, 25 November 2012

Kapasitor plat sejajar


Kapasitor plat sejajar, ya mungkin untuk teman-teman yang udah duduk di bangku SMA kelas XII ga asing lagi sama materi ini. Kalau di SMA kita bakal lebih sering menghitung tentang berapakah nilai kapasitansinya, baik itu kalau kapasitornya ketika sendirian atau ketika dirangkai baik secara parallel dan seri atau mungkin juga menghitung energi kapasitansinya. Dan kayaknya, materi tentang kapasitor itu bukan materi yang susah-susah amat kan ya hehehe…
Tapi coba kalau kita balik nanya, dari mana sih asal rumus kapasitansi kapasitor plat sejajar yang punya persamaan:

Ok, sebelum kita membahas tentang kapasitor plat sejajar lebih jauh, gimana kalau kita kenalan dulu sama yang namanya persamaan hukum Gauss untuk medan listrik. Hukum Gauss untuk medan listrik itu adalah salah satu dari 4 persamaan Maxwell yang luar biasa banget itu. Isinya untuk yang tampilan integral adalah:
Namun sebagai catatan, medan listrik dalam kapasitor plat sejajar itu kita ambil medan listrik yang ideal aja, atau yang tegak lurus karena kita anggap kapasitor plat sejajar memiliki luasan yang tak hingga. Nilai d (jarak antar kepingnya)-nya jauh lebih kecil dibandingkan A (luas)-nya. Atau kalau dibandingkan kayak gambar di bawah ini, dan kita menggunakan yang A. Ya, sebenernya sih ini untuk mempermudah kita bekerja dibandingkan kalau kita ngerjain sistem yang B (yang real  kapasitor) hehehe...
    
 Kalau kita perhatiin dalam persamaan 1 Maxwell atau dalam hukum Gauss untuk medan listrik itu kan persamaannya kayak gini:

Jadi, kalau kita selesaiin sistem itu maka jadinya adalah:

Dengan σ itu adalah rapat muatan per satuan luas. Atau mungkin kita lebih nyaman sama tampilan yang seperti ini ya.

Sehingga
Q = E.A.ε
Ocre, kita kan udah nemu tuh persamaan untuk medan listrik di dalam kapasitor. Sekarang gimana kalau kita nyari nilai potensialnya ya.. Inget kan, hubungan E sama V adalah:
V = E.d
Dimana nilai d itu berarti kalau dalam keeping sejajar adalah jarak antar kepingnya. Jadi kalau kita masukin ke dalam persamaan kapasitansi jadinya adalah:
C = Q/V
Jadi,

Sehingga:

Oh ya, kok sedikit berbeda ya antara persamaan yang kita hasilkan sama persamaan kapasitansi yang di atas banget itu ya. Kalau di sini kita gunakan nilai ε kok kalau di atas kita gunakan ε0? Jadi sebenarnya ε itu adalah permitivitas bahan atau suatu sifat elektrik dari suatu bahan. Nah, kalau ε0 itu adalah nilai permitivitas dalam ruang hampa. So, yang kita temuin dari hukum Gauss itu adalah rumus umum dari kapasitas kapasitor tanpa menentukan nilai permitivitasnya. Dalam artian, kita bisa gunakan semua bahan dalam persamaan tersebut ga perlu menentukan apakan itu ruang hampa atau bukan. Sedangkan kalau yang ada di atas banget itu, itu hanya berlaku kalau kapasitor menggunakan bahan ruang hampa sebagai bahan dielektriknya.
Sehingga, dengan menggunakan persamaan kapasitansi itu kita bisa menentukan jenis bahan yang terdapat antara keping sejajarnya. Dan aplikasi ini memungkinkan kita untuk menghitung kadar air dalam suatu bahan atau menentukan jenis bahan berdasarkan karakteristik permitivitasnya.

Tidak ada komentar:

Posting Komentar